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We investigate the correlation functions and the critical exponent v for 
Ising models and spherical models on d-dimensional hypercubic lattices in 
the limit d -+  oo. Our results include a generalization of the Ornstein- 
Zernike theory, and an alternative explanation of the crossover phenomenon 
described by Baker. 
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1, I N T R O D U C T I O N  

In  a recent paper  Baker  (1~ invest igated the high t empera tu re  series expansion 
for  the true range o f  cor re la t ion  for  Ising spin systems on hypercubic  lattices 
in d dimensions.  He suggested that  the corre la t ion- length  critical exponent  v 
takes the value uni ty  in the l imit  d - +  c~, ra ther  than the expected classical 
value of  one-half.  Baker ' s  suggestion appears ,  at  first sight, to be in conflict 
with a theorem proved recently,  (2~ which states that  the free energy of  d- 
d imens iona l  Ising systems approaches  the mean-f ie ld- theory (or  Cur ie -Weiss )  
value in the l imit  d - +  09. This theory,  however,  only yields the classical 
t h e r m o d y n a m i c  exponents  for  specific heat, magnet iza t ion ,  susceptibil i ty,  etc. 
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We show here that Baker's result v = 1 can also be obtained from a d ~ oo 
limit. 

In the theorem of Ref. 2, it was necessary to scale the nearest neighbor 
interaction strength by a factor d -1, and take the limit d--> oo after the 
thermodynamic limit. Similarly, in order to discuss correlation functions for 
spin systems in high dimensions, a further weighting factor must be inserted 
before the limit d ~ oo is taken. This provides a method of defining the range 
of correlation in the limit d---> oo. 

In order to motivate such a definition, consider the pair correlation 
function 

U(O, r)~,a = (l~otzr)N,a - (tZo)n,a(Izr)~,a (1) 

between two spins located at the origin and the lattice point r = ( x l ,  x2 .... , 
x~, 0 ..... O) of an Ising system of N spins on a d-dimensional hypercubic 
lattice. The interaction energy E{/~} is given by 

E{~}  -- ~-d , ~ " - / - /  t~r (2) 

for a given configuration {/z} of spins /zr = +_ 1. The starred sum is over 
nearest neighbor lattice points r, r'. The average of any function A{/x} is 
defined by 

( A )  = ~ A{I~}exp(-3E{I~})/~. , , , ,  exp(-3E{tz}) (3) 

The combinatorial development of the Ising model (see, e.g., Ref. 3) 
provides a high temperature, zero field expansion of (1) in powers of 

w = t a n h ( 3 J / 2 d )  (4) 

The first term of this expansion corresponds to the shortest lattice walk from 
0 to r, where each step is assigned weight w, Since xi is the total displacement 
in the ith direction, the weight of the complete walk is w z, where 

Z = ~ xi (xr > 0, i = 1, 2,..., n) (5) 
t = 1  

It follows from (4) that 

w ~ (2d)-1 as d--->oo (6) 

which implies that, for n and r fixed, 

U(0, r)a ~ (2d)- z as d---> oo (7) 

Here U(0, r)a is the limit as N -+ oo of U(0, r)N,a. Therefore, to investigate the 
d---> oo behavior of correlation functions, we define the weighted pair corre- 
lation function ~(r) in the limit d--> oo by 

~(r) = lim (2d)ZU(0, r)a (8) 
d--* oO 
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To define the range of correlation K, we follow Baker and, for simplicity, 
choose r to be parallel to one of  the coordinate axes. This amounts to setting 
n = 1, and yields the function ~(xl). Now we define 

K -z = - lim lloglq~(xl)l  (9) 
Xl~OO X1 

The critical exponent v in infinite dimensions is then defined by 

log]•l 
v =-~Tc+lim log[T - Tel (10) 

where, as in Ref. 2 (see also Ref. 12), 

Tc = 2J/k (11) 

which is the critical temperature in infinite dimensions. Similarly, on the low 
temperature side we define 

log]K{ 
v ' = -  r~,lim- loglT _ Tc I (12) 

One of our aims here is to show that v, defined by (10), is equal to unity, 
in agreement with Baker's conclusions. For the Ising model we also obtain 
v' = 1. The implications of this result are discussed in the final section. 

In outline, the derivation is arranged as follows. In the following section 
the theorem of Ref. 2 is generalized to a system with a nonuniform magnetic 
field. The result of Section 2 is used in Section 3 to evaluate the first term in 
the asymptotic expansion of U(0, r)a for large d. This term is a generalization 
of the Ornstein-Zernike formula, and has the same form as the exact correla- 
tion function of a finite-dimensional spherical model. The true range of 
correlation, defined by (9), is then determined in Section 4. 

2. HIGH D IMENSIONALITY  L IMIT FOR A N O N U N I F O R M  
FIELD 

As a preliminary to our derivation of the formula for the pair correlation 
function, we here extend the theorem of Ref. 2 to include a nonuniform 
magnetic field. 

We consider an Ising model with N spins, one at each point r of a d- 
dimensional hypercubic lattice. The total energy of a configuration (t~} is 
given by 

J ~*/~r/Zr ' -- ~ Hr/~r (13) 

where H,  is the field at spin site r and the starred sum is over nearest neighbor 
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lattice points. We choose H,  so that it is well defined and uniformly bounded 
for all d; for instance, we could choose 

1 a 
H,. = 7l ~=1 h(xO (14) 

where r = (xl ..... x~) and h(x) is bounded. 
The free energy per spin ~ba{H) is defined by 

-~ba{H } = lim N -1 logZN,a{H} (15) 
N ~ z  

where 

ZN,~{H} = ~ exp(-fiE{/~}) (16) 
{u} 

The main result of this section is that the limit of -fl~ba{H } as d--+ ~ is 
given by the following equivalent expressions: 

sup F(m, H} (17) 
m e . C  

sup F'{m, H) (18) 

where 

lim max Fu{m, H} (19) 
N ~  ~ m E J  N 

lim max Fu'{m, H} (20) 
N ~ oO m E . f i  N 

Fu{m, H} = N-1 ~ {log[2 cosh(2KMr + B,)] - KM,m,} 
r 

(21) 

Fu'{m, H} = N-1 ~ {mrB~ + KMrm, - a(m~)} (22) 
r 

F{m, H} = lira FN{m, H} (24) 

and 

F'{m,H} = l ira  Fu'{m, H} ( 2 5 )  
N ~ c ~  

Ju is the space of all N-tuples (m~, ..... m~N) where Im~,l ~< 1 for all i, and ,~" 
is the space of all sequences (m,1, m,2,...), where [m,,I ~< 1 for all i, which are 
periodic in space and are such that 

M, = lim (2d) -1 ~ m~, (26) 
d ~ w r ' ~ ( r )  
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exists. Here (r) is the set of nearest neighbor points of r. Also, K = flJ and 
Br = fill,., and the sums over r in (21) and (22) range over the N points of the 
lattice. 

The existence of all the above limits, maxima, and suprema, and the 
equivalence of (17) and (19), and of (18) and (20) can be justified by arguments 
like those in Ref. 4, where similar results were obtained for systems with long- 
range (Kac) potentials and finite d. 

The equivalence of (19) and (20) follows from the fact that both FN and 
FN' have their maxima for 

m~ = tanh(2KMr + B~) (27) 

where they obtain the same value 

~. {log 2 - KMrmr - �89 log(1 - mr2)} (28) 
r 

The results above reduce to those of Ref. 2 for a constant field (see 
Ref. 5). 

The proof of our results closely follows Ref. 2. First we obtain a lower 
bound on ZN,a{H}. Putting 

yields 

where 

Cr = >r - mr (29) 

ZN,a{H} = e x p ( - K ~ r  ,,~rrn,) ~ [2 cosh(2Xm, + Br)] 

x ( e x p (  K , ,  (30) 

for all mr such that 

mr = tanh(2Kmr + Br) (34) 

This latter is just the condition for the sum on the right-hand side of (33) to 
be a maximum. Hence in the limit d -+  ov we have 

-~b{H} /> lim max FN{m , H} (35) 
N~oo mE,fiN 

mr = (2d)-1 ~ mr, (31) 
r ' ~ ( r )  

and the average ( '")c is taken with respect to the distribution function 

P{~} = ~ {exp[(ZKmr + Br)t~r]}{2 cosh(ZKmr + Br)} -1 (32) 
r 

Following the method of Ref. 2 yields 

lim N -  z ~ {log[2 cosh(2Kr~r + Br)] - Kmrmr} (33) 
N ~ o o  r 
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To show that (35) also holds if the inequality is reversed, one can use 
(30) and the method of Ref. 2, and show that the average (-..)~ in (30) is 
bounded above by 

exp( CN /d) 
where C is a positive constant. This contributes nothing to -/3Ca{H} in the 
limit d -+  or; so the desired results (17)-(26) are obtained. 

3. THE O R N S T E I N - Z E R N I K E  F O R M U L A  

The two-spin correlation function of our model may be expressed in the 
form 

U(r, r')N,a = (/z,/z,,)~,a - (/~)N,a(/zr')N,a = (a/8Br)(#r')u,a (36) 

where 

(IZr)N.a = (~/~B,) log ZN.a (37) 

In this section we use the formula (20) to show that the two-spin correlation 
function is given by the Ornstein-Zernike formula (44) for sufficiently large d. 
The method is similar to that used in Ref. 6. 

The result (20) states that 

log Zx.a ~ NFN'{m*, H} (38) 

as N, d -+  oo (N >> d) where the mr* maximize FN', and hence satisfy (27). 
Assuming that we are justified in interchanging limits and differentiation, (7~ 
we deduce that 

~FN' ~m*. ~FN' , 
0 FN'{m*, H} = N ~ ~m*, DBr + W ~Br r~ (39) <~r>N,d ~ N ~ r' 

where the mr* are held fixed in the final term. Since the mr* maximize FN', it 
follows that 

~F~'/amr* = 0 for all r (40) 

Thus (22) and (39) yield 

(/*r)a ~ mr* as d--+ oo (41) 

and (36) becomes 

U(r, r')a ~ (~/OB~)m* as d--+ oo (42) 

Differentiating the expression (34) for m*, with respect to Br, and noting (31), 
then yields 

U(r, r ' ) a -  {l-(m*,)2}(dr, ,~c~,U(r,r")a+3r~, ) 

or, equivalently, 

U(r, r')a K 
U(r, r")a ~ 3r,, (43) 

1 (m*,) 2 d r"e(r ' )  
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Solving (43) for U(r, r')a yields in the limit N - +  oo (see Ref. 6) 

1 f~'~fexp(iO.r)aA 
U(O, r)a "~ 2K(2cr)a "'o" z Z ~(0) " ~  "'" dOa 

as d -+  0% where 

z = 1/2K(1 - m 2) 

e = (01,  02 . . . . .  Oe), 0 < Oi < 2rr 
and 

(44) 

(45) 

1 d 
A(O) = ~ ~--~1 cos 0~ (46) 

Here, we have set all the Br's equal to B so that all the mr*'s acquire the 
value m, where 

m = tanh(2Km + B) (47) 

The right-hand side of (44) is the general form of the Ornstein-Zernike 
formula. We may regard it as the leading term in an asymptotic expansion 
valid for large d, with correction terms of higher order in 1/d. 

We note in passing that the direct correlation function C(r, r'), defined as 
the matrix inverse of U(r, if)a, is given from (43) by 

C(r, r') ~ [1 - (m,*)2] -1 8rr, + (K/d)  A(r, r') (48) 
where 

{ ;  if r' e(r) (49) 
A(r, r') = otherwise 

In particular, C(r, r') ~ K/d  if r and r' are nearest neighbors. Thus, the 
direct correlation function is essentially the interaction potential in this limit. 

It is interesting to note that the two-spin correlation function for the 
spherical model has precisely the form (44) for all d. In particular for nearest 
neighbor interactions of strength J / d  on a d-dimensional hypercubic lattice 
the spherical model two spin correlation function has the form (8'9) 

l f2=fexp(iO.r) 
(SoSr) - 2K(2r0 a "'o" z --- ~(0) dO1 ... dOa (50) 

with A(0) defined by (46) and z determined by the saddle point condition 

1_ 
2 K -  (27r)a (51) 

The corresponding limiting free energy per spin is given by 

-3~b = - �89  - �89 log 2K + Kz - �89 (52) 
where 

1 j" 2~ f log{z - A(O)} dO1 "" dOa (53) f ( z )  = ~ "o" 
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To investigate the d--+ ov form of (50) we use the elementary identity 

f; x -  1 = e -  tx dt (54) 

and write (51) as 

Here 

2 K  = e-~[lo( t /d)]a dt 

~0 ~ Io(x) = (1/2zr) e x~176176 dO 

is the modified Bessel function of zeroth order. 
Integrating (55) by parts, we obtain 

If :  1 2 K  = z -~ 1 + e-t~I~(t/d)[Io(t/d)]d-~ dt 

where 

Using the inequalities (x /> 0) 

then gives 

(55) 

(56) 

(57) 

Xl(x) = Io'(X) (58) 

0 <~ I i ( x )  <~ x lo(x) /2  <<. xeX[2 (59) 

z -1 ~< 2K ~< z -1 1 + (2d) -1 te - t (~-~  dt (60) 

Hence, in the limit d--+ 0% 

z = (2K) -1 provided 2K < 1. (61) 

When 2K/> 1 the saddle point "st icks" at z = 1.(87 
In a similar way one can show thatf (z)  defined by (53) approaches log z 

as d - +  ~ (z >I 1). It then follows from (52) that in the limit d---~ 

0 when 2K < 1 
- f i e  = - � 8 9  + K -  �89 when 2K/> 1 

(62) 

The form (62) agrees precisely with the corresponding expression for the 
Curie-Weiss spherical model. (I~ 

From (61) the two-spin correlation function (50) for the spherical model 
in the limit d--> oo is given by 

l 2~ (SoSr) ~ 2K(2~)a f "o" f exp(i0-r) z ~ A(-~) dO~ ... dOa (63) 
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where 

((2K) -1 for 2 K < l  
(64) 

z = for 2K >~ 1 

It will be noted from (44) and (45) that above the critical point (2K < 1 
where m = 0) the Ising and spherical two-spin correlation functions are 
identical in the limit d--.'- oo. 

4. THE WEIGHTED CORRELATION FUNCTION 

In this section we study the weighted correlation function 

~(r) = lim (2d)zU(0, r)a (65) 
d ~  

defined by (8), with r = (x~, x2,..., x , ,  0,..., 0), x~ > 0, and 2; = ~ =  ~ x~. 
Our method takes (44) [or (53) for the spherical model] as a starting 

point. It is therefore rigorously correct for the spherical model, but relies on 
the assumption leading to (43) in the case of the Ising model. 

Using the identity (54) we can write (44) in the form 

1 r ~2 
U(0, r)a 2K(-~-@f ~ d t e - ~ t f  "'o'f do1 ""dOa 

x exp iO.r + a/.= cos O, (66) 

Using the identity 

~0 2~ lx(y) = (1/2~r) exp(iOx + y cos 0) dO (67) 

for the modified Bessel function of the first kind of order x yields 

2-klf ~o (d) a-" ~ Ixj (d)  U(0, r)a "-~ e-ZVo •177  at (68) 
]=1 

for r with nonnegative components x~ where x~ = 0 for n < i ~< d. 
From the series expansion (for integral x) 

2 (Y/2)x+2~ (69) Ix(y) = (x + s) ! s] 8=0 

we note that Io(y) >/ 1 (y >/ 0) and that 

Io(y) ~ - 1 = (Io - 1)(Io k-1 + Ig -2 + ... + l) 

~< ( Io  - 1 ) ~ I o  ~ - 1  

<<. (Io - 1)kd k-I~ (70) 
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since (69) implies Io(y) <~ e y. Again (69) gives 

2 (y/2)=, <~ e ~ 
I o ( y ) -  1 = (s + 1)' 4- 

x = O  " 

so that from (70) 

Similarly, (69) gives 

which yields 

(y/2) ~ 

2 

1 <~ Io(y) k <-N 1 + k ~ e ~y (71) 

(Y/2)x (Y/2)XeU (72) 
x--'-'-T- ~< /~(Y) ~< x---'-'-~-- 

I-Ixj--------5 <~ F I  Ix,(y) <<. "(Y/2)Ze'~-------~u <<. (Y/2)z (1 + nye 'w) (73) 
�9 j=~ VI x j t  

where Z = E~=, x~. 
Substituting (71) and (73) into (68) gives 

fo 1 ~o e _ , ~ i _ l ( t / 2 d ) x  ' 
U(0, r)a ~ 2-K dt j= 1 xj! 

(&,,)(m; 
- 2Kz ~ + �9 

m + r  

where 

(74) 

1 f ;  (t/2d) z 0 4 E <~ ~ dte-~t  H x j !  

<~ 2K(fd)~+ 1 dt e-("-l)t(t ~+~ + lt~+2 + �88 ~+a) 

= O((2d) -~-1) for z > 1 (75) 

The definition (65) applied to (74) therefore yields 

1 [ Y'! '~z- z provided z > 1 (76) 
~(r)  = ~ \ l - i  x ,  !] 

This formula is essentially the first term in the high temperature expansion of 
U(0, r)a. The combinatorial factor is simply the total number of walks of 
minimum length connecting 0 and r. 
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To determine the range of correlation (9), we first take n = 1 in (76) and 
obtain 

4,(xl) = (1/2Kz)z -xl (77) 

Then (9) immediately gives 

K -1 = loglz I (78) 

Noting that the slope of the curve y = tanh(2Km + B) is strictly less than 
unity where it intersects y = m ( >  0), we have for all K and B > 0 that, for 
the Ising model, 

z = 1/2K(1 - m 2) > 1 (79) 

and moreover for B = 0 

z -  1 ~ I T -  Tol as T - + T o  ( 2 K - + l )  (80) 

I t  then follows from (10) and (12) that for the Ising model in infinite dimen- 
sions v = v' = l. 

For  the spherical model, (78) also holds with z given by (54). It  follows 
that K is only defined for T > To (z = 1 for T ~< To) and from (1.10) that 
V ~ 1 .  

Baker's result is thus established for both models. 

5. D I S C U S S I O N  

The main new result of  this paper is the generalized Ornstein-Zernike 
formula (44) for an Ising model of high dimensionality. A corresponding 
formula for three-spin correlations, like that of  Ref. 6, can be obtained by 
the same method. 

The question of  the value of v can be resolved as follows. Its value vd for 
a d-dimensional Ising model is defined by 

logl~dl (81) 
va = - lim log[-T~ ~rc,a] 

T"*Tc, a 

where Tc,a is the critical temperature and 

K a -  1 = - lim 1 frl~ = TrT log u ( o ,  r)a (82) 

For the spherical model, it is known (9) that 

v a = l  for d>/  3 (83) 

Since the Ornstein-Zernike formula (44) for the Ising model agrees precisely 
with the spherical model result for large d, one might expect that 

lim va = �89 (84) 
d-~oo 
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for the Ising model. This is also supported by renormalization group argu- 
ments, (11~ which suggest that  va = �89 for d >/4.  

Compar ing  (9) and (10) with (81) and (84), we see that  there is no conflict 
between (84) and the result v = 1. In  the former, the limit d--~ oo is takenf irs t  

(with a weighting factor), while in the latter case, it is taken last. The different 
results follow simply f rom taking limits in a different order. This fact is 
reflected in Baker 's  analysis o f  the series for  K21: Depending on how the 
series are analyzed, it is possible to obtain either v = �89 or v = 1. 

Finally, we note that  to extend the definition (9) to an arbitrary vector 
r = re, the combinatorial  factor  in (76) must  be absorbed into the definition 
(8) o f  ~(r), and limxl~o xi  -1 ... replaced by lim~.~oo 2; -1 .... With a ~;-1 so 
defined, it follows f rom (10) and (76) that  v = 1 as before. 
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